

SETY BSS AND FOOD SAFETY

http://ucgaps.ucdavis.edu http://ucfoodsafety.ucdavis.edu

National Watermelon Promotion Board Microbial Food Safety Program 2004

L.J. Harris and T.V. Suslow

- Brief background of outbreaks
- Cross-contamination concerns
- Research progress report
 - Survival on the outer rind
- Possible next steps

Watermelon Outbreaks

Pathogen	Date	Location	Cases/ Deaths	Cause
Salmonella	1950	Minnesota	6/0	Temperature abuse after preparation.
Salmonella	1954	Mass.	17/1	Possible transfer from rind.
Salmonella	1979	Illinois	18/0	Damaged fruit cut for sale. Temperature abuse after preparation.
Salmonella	1991	Michigan	26/0	Possible transfer from rind. Temperature abuse after preparation.
Shigella	1987	Sweden	15/0	Contaminated water used to inject melon.

E. COLI TRACED TO WATERMELON

SIZZLER APPARENTLY HAD TAINTED FRUIT

By Tom Held of the Journal Sentinel Staff Aug. 1, 2000

Outbreaks Associated with Watermelon

No known outbreaks linked to contamination at production or shipping

* 2002	India	Injecting with unclean sugar-water +color
---------------	-------	---

2000 (64/1) Minn. Si	izzler Cross-contan	nination at food prep
----------------------	---------------------	-----------------------

- ♦ 1993 (18) U.S. Home juice preparation
- ❖ 1991 (39) Michigan School picnic
- ❖ 1979 (18) Illinois Supermarket salvage + temp. abuse
- ❖ 1954 (18) Florida Injecting with non-potable water

Melons Present Special Problems in Microbial Food Safety

- High sugars, low acid
- ✓ Internal tissue is "clean"
- Processing removes barriers
- Cutting will transfer microbes
- Rapid multiplication potential
- High consumer use rate

Foundation for most Fresh cut fruit medleys

Direct contact of edible flesh with outer rind is common

Surface Characteristics Greatly Influence 'Cleanability' and Disinfection Efficacy

50 ppm Free Chlorine@ pH 7.0 for 5 min; 12°C

99.95% reduction

Mature Honeydew

90.5% reduction

Mature Cantaloupe

Washing Produce Does Not Eliminate Pathogens

Therefore !!!
At every step in the food chain

- Prevention
- Reduction
- Education

NWPB Microbial Food Safety 2004 Objectives

- 1. Assess survival of target pathogens on rind
 - a) E. coli O157:H7, Salmonella spp., Shigella
- 2. Simulate distribution and handling conditions
 - a) Low RH vs. High RH
 - b) Temperature
- 3. Compare survival among
 - a) Upper vs. lower surface
 - b) At ground spot
 - c) Seed, seedless, flesh color
 - d) Stem scar
 - e) Scuffed or wound-damaged and healed areas

What is the Threshold for Detectable Transfer at Cutting?

Whole melon	Post-cutting and Incubate 24h @ 80°F					
Inoculum level (Cells/rind- spot)	Agar plates A B		UV Light Rind Interior flesh	PCR +-		
Negative control	(-)	(-)	(-)	(-)		
1000	(-)	(-)	(-)	(+)		
10,000	(+)	(+)	(-)	(+)		
100,000	(+)	(+)	(+)	(+)		
1,000,000	(+)	(+)	(+)	(+)		

E. coli O157:H7

Temperature abuse post-cutting is #1 concern

- Prevention from contamination
- > Effectiveness of disinfection

Possible Next Steps

- Complete studies under very low RH
- Consumer and foodservice washing
- Watermelon specific GAPs guidance
- Regionally specific RMP's
 - recommended practices

Watermelon Handlers May Enjoy A Relatively Unique Risk Reduction Message

Results from Limited Model Washing Studies

Commodity-specific GAPs

- Cantaloupe
- **❖** Tomato
- Lettuce
- Green onions
- **❖** Almond
- Spring mix

COMING IN 2005

Safety Program

"GAPs are a critical foundation for a comprehensive food safety program for both growers and bandlers. The 7 Practices of Successful Almond Growers is an awareness building platform that every grower should apply; it is just good business sense."

Trevor V. Suslow, Ph.D., UC Davis

Almond Board of California